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Abstract. In this work a model of information storage is presented, it is spe-
cidlly adapted for not supervised neurocomputing systems. Our model uses the
Ramsey Theorem as theoretical foundation. Experimentaliy is shown that a dis-
crete matrix randomly generated and sufficiently large (dependent of m x 71, is
possible to find any discrete matrix of size m x n. The probability p{p < M) of
finding a sub-matrix of size m x n within a specific Random Memory Space in-
creases when limited degree of error is allowed. Latter w Then we introduce the
concept of information pattern. We also applied different linear transforma-
tions to the original matrix, which extends the search space and therefore also
increases the probability p(@ ¢ M). The model is implemented using memories
of four states and is demonstrated one of the main characteristics: the informa-
tion superposition. A physical element of memory is used to store several pat-
terns of information at the same time. It is shown that for information patterns
of square dimension {m % m) the maximum degree of superposition that can be
obtained is (2m — [} and that in an RMS of relatively small size is possible to
store a large amount of information pattems.

1. Introduction

.The necessity of models to represent targe amounts of information is characteristic in
the neurocomputing field [2]. The goal of this work is to raise a model of information
.storage: Random Memory Space (RMS). This model has theoretical foundation in
_the Ramsey theorem, which mainly affirms that if a graph contains sufficient number
of _:Vertices (lets say, dependent of k), then it must contain a complete set or an inde-
endent set of size k [4].

- Out model starts off from the supposition of within a discrete matrix of size i X j
 sufficiently large and with randomly values generated, it is possible to find any dis-
: qr'et_é_ matrix of size m x n, with a probability directly proportional to the size of the
andom matrix and inversely proportional to the size of the submatrix that looks for.

~In general, the model consists in a binary matrix M randomly generated. The in-
Srmation that is tried to search and store is put under a transformation, by means of

‘which a binary chain s becomes a matrix ¢. Takes place a search of ¢ in each one of
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the defined linear transformations for matrix M, until is found a submatrix © of M that
is equal to @. In that moment a memory element is “marked” which has a specific
position within @ with a reference to the transformation in which the submatrix was
found. This allows the effective recovery of all the matrices @ and therefore of all the
“stored information”.

Since the use of the elements of a submatrix @ by a matrix ¢, does not prevent that
some of these elements are used by some other matrices ¢5,9s,....0,, is possible that
several matrices @; share the same physical memory space, giving rise fo the informa-
tion superposition (Figure 1).
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Fig. 1. Information: superposition in a random memeory

If we allowed that the search of matrices ¢ in the Random Memory Space present
limited errors, this is, if we allowed that a limited difference exists between ¢ and
some submatrix ©, then the probability of finding & within M increases.

We are speaking then of information patterns, since our interest is not centered in
an exact representation of an information structure but in a fundamental structure that
must be conserved and that it is significant within some computing paradigm. In sec-
tion § we experimentally show that introducing thé concept of information pattern
dramaticaily increases the probability of finding within M some © that it conserves the
fundamental structure of a matrix .

Although the calculation of the size of the random matrix for a specific size of
submatrices m x n remains unknown, we set out:

1. To find experimentally a relation between the sizes of the matrices, in such a way
that we have the certainty that given a size of submatrix, will be possible to find
any instance of this size within the random matrix;

2. Studying the behavior of the model when it is tried to store large amounts of infor-
mation and

3. Proposing the model as an effective and efficient paradigm for neurocomputing
systems.

-2 Ramsey Theorem

..In the mathematics field there are several theorems that affirm in a general form, that
all system of a certain class contains a subsystem with a degree of organization greater
than the original/container system [1].
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The known “Ramsey Theorem” type theorems prove the above affirmation using
different mathematic objects of analyses: sets and graphs (Ramsey) [7], equations
(Schur, Rado) [8] [9], arithmetical progressions {Van der Waerden) [12], finite se-
quences constructed from finite sets (5 Hales-Jewett) [5], vectorial spaces {Graham-
Lib-Rothschild) [3], etc. These theorems conform what it is known in a general way
like the Ramsey Theory, a discipline within the discrete mathematics. Most of these
theorems affirm that a colored in r of any structure sufficiently large contains a mono-
chrome substructure of certain size. In terms of the graph theory, if a graph contains
sufficient vertices (a dependent number of &), then it must contain either a complete
set or an independent set of vertices of size £.

It turns out advisable to mention that some mathematical theorems as Bolzano-
Weierstrass, affirms that within any limited seguence of compiex numbers, a conver-
gent subsequence exists, fall within the class of theorems mentioned in [1], but do not
conform part of the Ramsey Theory.

In order to give a formal definition we introduce the following notation.

Sea 7" = {1,2,...}= the positive integers

I, ={l,..at,ne Z" an arbitrary set of
cardinality n

1)

[A]*={B:B C A, Bi=k}

A coloring r on a set S is mapped

- fi8 -1, (2)
'.F_o_;':s € 8, f(s) asigned the color of s; we say that f is monochreme low, if ((s) is
_cgn_;tant inT, foraset T < 8, this is:

: A= Vte T, TCS, iconstant 3
:'__G'iv.en any colored rof [n%if 3i, 1 igrandaset T [n], [T} = & so that [T]
is monochrome in 1, then we wrote

i n—= .k 4

'h'e: function of Ramsey R{l,,...,]} denotes the minimum value of n so that the pre-
ouS proposmon is true.

The: generalization of the previous case is when we considered colored r of [n]",
here k i is an arbitrary mteger number.

We define n — (1,,...,1)¥ if, for all colored rof[n], 3i,1<i<randaset Tcl,,
so that [T}" is monochrome in i.

= E
“In.this case, the function of Ramsey for sets of k-cardinality is indicated by R.

Rill),ennl) = minfng : forn 2 ne, n = (A &)

‘The Ramsey theorem affirms that the function Ry is well defined; this is, V' k, b,-...l,
Xists r_i_a_so that for n = ny is fulfilled that
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15l (6)

Several demonsirations of this theorem have been devetoped. The original demon-
seration in charge of Frank P. Ramsey takes the case for an infinite set like and the
finite set 7).

The calculation of the exact values for the Ramsey function R(k,!) for small values
of k, 1 has took tremendous efforts, nevertheless, until now only the exact values of the
superior and inferior levels are known, published in[ 6 ].

Our interest is to prove experimentatly the basic idea of the Ramsey Theorem in
discrete matrices and using this powerful idea as foundation for a new paradigm of
information storage in neurocomputing systems. Decause of it, we must prove experi-
mentally that in a discrete matrix M sufficiently large {possibly generated in random
way) we can find any discrete matrix ¢ of a smaller size than M, with a probability
that increases as the size of M also increases, in other words p (¢ < M) increases if M
increases its size

3 The Formal Model

We defined a Random Memory Space (RMS) as the tuple <M,E,S.T,®,I"e> where M
is a bidimensional matrix, E < Z* , § is an ordered pair, T isa set of % linear trans-
formations on M, M, v M,, © is the set submatrices of size m x n contaiped within
t(M,) and T it is the set of patterns that are store in the RMS arc sets, and e € Z°

M is a matrix of size / x j that contains structures of the form {v,r) where v e E, ris
a reference to some T ¢ T, E and T are finite sets and

EcZ’ (7
We define the set of values B’ as
E'={e:ecE AE|={E|/2 } )]
The v values are initially generated in a random way and obey the constrain
ve E’ )]

We define the matrix of values M, just like the one we gets from deleting the r ele-
ment 1 of each structure (v,r) of the matrix M. The references matrix M, is the one we
gets from deleting the v element of each structures (v,r) of the matrix M.

The relation between M,y element and My element is permanent, this means, and
M,; element is refated only with the M; element in any given moment.

S =(m,n) wheremn € Z° (10)

Let M". M, y M, generating the matrix sets for the set of T linear fransformations
over M, M, y M,
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. M={tM):1e T} (1n
MY = {t(M,):te T}
M, = {t{M,):te T}
© is the set submatrices of size m x r contained within (M, matrices of MY, .
8= {0, 9, < HM,) for some 1} (12)
Where each @, element within © is formed by the set of P,y elements
ny = {nylh?xy12:---:nyhk,---spxymn} (13}

_ And where each P,y is a v value in T(M,) with a position (h,k) given a relative ori-
© gin (x,Y).
E Given some ©,., . € O, where a, b e Z7, if the conditions al <m y |bf <n fulfill,

. and

B= ®xy M ®x+a xth (14)
then the next proposition is true:
B=0 (15)

It can be observed that the submatrices @, and Gy, wp cONtaN Puyi elements in
- common within some matrix @My}. The amount of elements shared within t(M,) by
-, this pair is

| B |={ abs( m - abs(a)} ] { abs(n - abs(b)) ] (16)

where abs(x) is the absolute value of x.
The number of submattices €, in MY is denoted by

c={(i-m+1)G-n+1)]t (17
where t is the number of linear transformations applicable to M.
T={T}| (18)

_ An input pattern ¢ is a binary matrix of size m x n. Applying the T linear transfor-
~- mations to the M, matrix increases the occurrence probability of ¢

plepe ©) (19)

The search of a pattern @ in the RMS is mapping from the input plane ¢ to some
- plane 1{M,) for some 1, resulting a submatrix @,, € O, which no necessary is equal to
¢, and the number of elements which they differ is denoted by

w-l ol

0.0, T I Qun VW Ourry+y (20}
k=0 =0

where W is an equivalent operator, that is defined as follows:
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_Jo ifaRd -
“e | otherwise @1

The relation R: B’ - E is reflexive and keeps correspondency 1 to 2.
For the input pattern ¢ can be assigned to the submatrix Sy, the following condi-
tions are needed

= (q):@xy) Pe Y @xyll € B’ (22)

due to the moment of assignment, the v vaiue of Gy is replaced with w & E,
vRw, v#W,

and this element witl not be able to be used to mark any other input pattern @,. Ad-
ditionaily, to the r element, with which @,y forms a structure {v,r} in M, must be
assigned to it a referente to the transformation ¢ for wich ®,yisa submatrix of T(M,).

Let T it is the set of patterns that are store in the RMS given a set 0 of input pat-
terns

m-1ai-1
T={O:{ E“)in@ W Oy (x+%y+1) )T, &,
o (23)

By e (BE- EM, 6,, < 1(M,) para alginte T,pe B}

The degree of superposition of a M;; element, this is, a structure (v,r) with position
i, j in matrix M, is the numbet of submatrices Oy, that store some input pattern ¢ with
9,0,) <=¢ and that shares the M,; element of M.. For input patterns ¢ with
square geometry m X m the maximum degree of superposition is determined by

(2m -1y (24)

Because when storing a paitern, an element {v,r) is “marked”, the maximum number of
patterns that can be stored in a random memory space is i x j, the size of matrix M.

4 Implementation

M is implemented like a vector of n matrices (M, Ma,...My) of size i x j. Since we
wished to handle binary patterns of information, each element of M; is a memory unit
of 4 states:

E=(0,1,0%1% y E2(0, D (25)

. The value of n depends on the number of transformations T defined on M, M, and
M, (t=|T}). Inour experiments we decided to use two sets of linear transformations.
The first one consists of 16 transformations that are obtained as the following way:

1. 4 different rotations: 90, 180 and 270 degrees.
5 To each one of these rotations, transferring in its horizontal axis.
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3. To each one of the § previous transformations, invert the jogical values
of the matrix.
Since each element of memory can codify four different states, a vector of two ele-
ments can codify sixteen transformations. We say that

Mv = M!
M, = (M3,Mz)

(26)

and an element (structure) of M with position i,] is defined by
Mj = (M, (May, May)) 27

where v = My; v £ = (Mg, Ma)
The second set includes 48 transformations, 3 of which we called basic:
. The original matrix.
. Interchanging even of lines,
. Interchanging even of columns.
. To cach one of the three previous transformations, 16 transformations of the first
set are applied to it.
In this case, we defined four matrices: M, Mz, M; and My:

Mv = Ml
Mr = (M23M13M4) (28)

: My = (Mg, (Mg, M, M)

" The size i x f of M, the size m x n of the input patterns @ and the ailowed error de-
.. gree ¢ in the search of patterns within M,, stay as parameters for the experimental
" analysis.

" However, in our experiments we restricted the dimensions of M to m square spaces,
“thisis, i =jand m = a.

R

3 Lxperimental Analysis

“The first experiment consisted of measuring the occurrence frequency of the elements
" inside a set of generated randomly input patterns.

" The objective is to find experimentally a relation between the sizes of a matrix M,
the size of the palterns ¢ and the allowed degree of error, in such a way that we have
the certainty that any input pattern will be found inside a specific Random Memory
Space.

.- The results are in Tables 1 and 2 respectively with 16 and 48 transformations of
RMS’s.

17 Next we measured one of the most important characteristics of the model: the in-
“formation superposition. For it we generate randomly n patterns, carried out the
- search and allocation of each pattern and later we measured, for each structure (v,t) in
M, how many patterns are occupying this structure (the superposition degree). The
“value of n must be adequate in order to find all the patterns within the RMS, Tables 3
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and 4 show the number of structures that present certain degree of superposition given
the size of a RMS, a size of input pattern, a number n of patterns, and an specific error
degree £. These results are the obtained as average of 50 repetitions of the experiment
for 16 transformations of RMS’s.

Table 5 shows the results obtained for a RMS of 120x120. It is used exclusive pat-
terns of size 3x3 and 4x4 because it is not possible fo find all the patterns generated
when its size is 5x5.

Table 1. Experimenta) results of the occurrence frequency of & binary pattern within a RMS
using 16 transformations (averages on 50 patterns)

Pattern | Error RMS Dimension
Size | Degree | 120x120 | 300x300 480x480 | 9260x960

0 437 2772 7126 28668

3x3 1 4327 27766 71356 286715
2 20023 127785 328388 1319594
i 3 21 54 223

dxd H 55 365 944 3799
2 460 2961 7640 30607
3 2336 14991 38754 155846
0 0 { 0 0
1 0 1 3 9

x5 2 2 12 35 145
3 16 111 282 1166
4 96 639 1651 6639

Table 2. Experimental results of the occurrence frequency of a binary pattern within & RMS
using 48 transformations (averages on 50 pattems}

Pattern| Error RMS Dimension
Size | Degree | 120x120 | 300x300 480x4 80 260060
0 1307 8341 21445 86008
3x3 1 12583 83264 214137 859308
2 59928 383249 | 984917 3957367
0 10 65 166 673
Axd 1 171 1097 2824 11338
2 1394 8825 22867 91888
3 136 45029 116272 466911
0 0 0 0 2
1 0 3 9 33
5x5 2 5 38 107 430
3 50 325 555 3461
4 297 1923 4973 19963
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Table 3. Results of information superposition (IS) in random matrices of size 120x120 with 16

transformations
Pattern Error Number of Superposition Degrees
Size Degree Patterns 0 e 70 30 G 50 50 77 G g0 0°
250 13108 707 321 181 61 18 4 0 0 0 0
3x3 0 500 12503 740 437 298 213 | 133 | 58 17 1 0 0
1000 11426 D39 553 450 297 | 304 | 226 [ 115 | 74 16 0
250 11306 2366 572 136 18 2 0 0 0 0 0
4x4 1 500 9074 3445 1305 414 118 | 35 2 1] 0 0
‘ 1000 6571 3676 1941 1144 | 591 | 293 | 122 | 48 13 1 0
250 10101 3335 845 91 8 0 0 0 0 0
5x5 2 500 6690 5070 2006 545 87 2 0 0 0 0 0
1000 3417 4705 3456 1822 [ 733 | 210 | 42 12 3 0 0
Table 4. Results of IS in random matrices of size 300x300 with 16 transformations
Pgr_mm E[r,ror Nun}ber Superposition Degrees
T ] 1° 2° 30 4 [s5° ] 6° 7° 8" 9°
2000 9833 1120 667 607 408 | 376 | 417 334 343 290
3x3 0 8000 1893 1606 1201 1119 792 | 7451 931 836 1170 | 4099
12000 60 175 315 683 663 | 804 | 1121 1154 1645 | 7343
2000 3717 3242 2261 1598 1210 | 945 | 656 409 216 92
4x4 1 8000 112 271 462 699 922 | 950 | 1030 1089 1093 | 1045
12000 5 26 63 117 241 116 122 190 353 407
Error | Number Superposition Degrees
e P e [ 10 [ 0P [ 122 [ 12 [ 1 [ 1 | 1e [ [ 18 | 19°
Size
2000 0 0 0 0 0 0 0 0 0 0
3x3 0 8000 3 0 0 0 0 0 0 0 0 0
12000 | 371 50 9 1 0 0 0 0 0 0
2000 35 9 2 0 0 4] 0 0 0 0
dx4 1 8000 1062 1134 1190 1196 1075 729 294 35 1 0
12000 | 611 896 1239 1560 | 2060 | 2590 | 2507 | 943 249 62
Error | Number Superposition Degrees
| Ll [ | = [ 2 | 2% |5
Size
2000 0 0 0 0 0 0
3x3 0 8000 0 0 0 0 0 0
12000 0 0 0 0 0 0
2000 0 0 0 0 0 0
4x4 1 8000 0 0 0 0 0 Q0
12000 18 10 8 3 2 1
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Table 5. Results of IS in random matrices of size 120x120 with 16 transformations and a aum-
ber of pattems near to storage the Max ima capacity

Pattern Error | Bumberof Superposition Degrees

Size | Degros | paperns | o° 1° 20 30 7 135" 1601 7" [ 8 |9 |10

%3 ) oo T 87668 | 1075 | 660 ] 363 | 171 |48 [ 13 ] 2 1 0 | O} O
oor Tseaoa 1 9s6 | 578 | 533 | 341 (321|205 | 96 f 41 4 8 1 O
Too0 | 85335 | 992 | 645 | 775 | 498 | 460 1550 | 321 [ 776 1 156 ] O

Axa ] =06 | 34255 | 3805 | 1226 ] 354 | 111 [0 f 7 ] o fe } o b0
700 T 27650 1 4207 | 2000 | 1099 | s&6 J261 | 83 [ 23 | + 1 0 3 O
060 | 78251 | 4366 | 2371 | 1658 | 1250 | 850 558 | 376 | 185 | 97 | 3l

5x3 2 500 | 78338 | 10851 | 784 27 0 nlolototeo |0
1000 | 68467 | 18443 | 2744 | 3165 | 3! 71 o0 ]6jolo]|o
Snon | 52005 | 28124 | 8016 | 1610 | 215 26} 4 J 6} o 1 0] 40

6 Result Analysis

In Tables 2 and 3 we can observe how the probability of finding a input pattern
within a RMS of particular size increases directly proportional to the size of the RMS
and the atlowed degree of error and inversely proportional to the size of the input
pattern.

Tables 3, 4 and 5 along with Figures 2 and 3 reveal in very clear form the informa-
tion superposition that takes place in each element of physical memery within a RMS.

We can observe quantitative and qualitatively how a same physical element of stor-
age can be used to store mere information of what is capable a conventional model of
memory. In Section 3 is affirm that the maximum degree of possible superposition
when we used input patterns with square geometry m X m is (2m - 1Y, this means, it is
possible that {2m — I¥ patterns can use the same element of physical memory.

Actually we see that the maximum degree of superposition is much smaller, even
though the number of stored paiterns is very near 1o the capacity of the RMS, this is
because the calculation of the maximum degree of superposition obeys to a specific
distribution of the patterns in the different transformations from the matrices and the
position within these transformations, distribution that does not have any certainty to
be obtained given the random nature of the matrix.

We can perform an analysis of the theoretical capacity of information storage ina
particular RMS and compare this value with its analogous, using a conventional modei
of memory. This is, in a RMS of 7 X { that stores binary input patterns of size m x m
(using physical memories of four states), theoreticaily we can store [ X i patierns,
therefore we can store i X m’ bits, this is, it is possible to be codified 2
combinations. When the same space of physical memory is used in a conventional
way we can store to i X i elements of memory of 4 states, this is, 2 X i bits, with
which they are possible to be codified 2 2 1#1 .ombinations. The difference is clear,
and can be observed that the capacity of storage remarkably is increased when increas-
ing the size of the input pattern. For example, if the size of the input patterns increases
to (m+1) X (m+1) the amount of combinations that can be obtained is 2 7 MDY

iXji ®*mxm
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(m+1) the amount of combinations that can be obtained is 2 **' * ™ * (™D which

means 2 1 *@™ D times more than the quantity obtained with patterns of size m X m.
However, it is not possible to increase capriciously the size of the input patterns; it

must obtain a balance between the capacity of storage and the probability of finding
these patterns.

7 Conclusions

The model of Random Memory Spaces for the information storage presents several
interesting characteristics, between which they stand out its primarily random nature
and the information superposition. At the present time the paradigm of the quantum
computation uses the concept of superposition of states using abstract entities called
gbits as fundamental element of storage [13]. Apparently the use of a same physical
organization to represent different things (states, information, etc.) of simultaneous
way, it is an important concept for the development of new computing paradigms.

The direction towards the processes of storage and the simple manipulation of in-
formation is a characteristic that distinguish to the Random Memory Spaces of other
models of storage trims in the direct representation of information. Nevertheless,

these simple processes and manipulations provide a great capacity of dynamic storage
of information.
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